

Feed Evaluation

PENGAWASAN MUTU PAKAN

KEGIATAN

- -Pengadaan Bahan
- -Pencampuran
- -Penyimpanan
- -Pengangkutan

INFRA STRUKTUR

- -UU dan PP
- -Pengawas/Inspektur
- -Laboratorium Analisa

STANDAR MUTU

Feed evaluation

- A. Physical methods --> bulk density, sensory (organoleptic) analysis
- **B. Chemical methods** --> proxymate analysis, Van Soest's analysis, energy
- **C. Biological methods** --> *in vitro* fermentation systems, *in vivo* feeding trials

A. Physical methods

Bulk Density

UJI ORGANOLEPTIK/SENSORI

B. Chemical methods

Nutritive Value of Feed

Fraction	Nutritional Availability		
	Monogastric	Ruminant	
Sugars, Starch	Complete	Complete	
Protein	High	High	
Lipids	High	High	
Pectin	High	Complete	
Hemicellulose	Low	Partial	
Cellulose	Low	Partial	
Lignin / Cutin	Indigestible	Indigestible	

(adapted from Van Soest, 1966 and 1967)

Crude Nutrients

Proximate (Weende) system of analysis, Henneberg & Stohmann 1862

Crude protein (XP)

protein, amino acids, ammonium compound, amides od acides, nitrogenous glycosides, B vitamins

Crude lipid (XL)

fats, oils, waxes, organic acids, pigments, sterols, vitamins A, D, E, K

Crude fibre (XF)

cellulose, hemicellulose, lignin

Crude ash (XA)

macro- and microminerals

Nitrogen free extract (NFE, XX)

starch, sugars, fructosans, hemicellulose, pectin, organic acids, resins, tannins, pigments, water soluble vitamins

Cell Wall Components: Detergent Fibre System

Cellulose

β-1,4-glucan, cellobiose + residues, forms microfibrils by intra-molecular and inter-molecular H-bonds, mechanical strength, highly crystalline or "amorphous" regions

Hemicellulose

("Cross-linking glycans"), diverse group of carbohydrates, common xyloglucans and glucuronarabinoxylans, soluble in strong alkali, β -1,4 backbone + short side chains, form H-bonds with cellulose

Pectin

(pectic polysaccharides), easiest to remove from wall (hot water, dilute acid), form gels, function: determining wall porosity, providing charged wall surface for cell-cell adhesion, cell-cell recognition, pathogen recognition etc.

Protein

glycoproteins (polypeptide backbone + carbohydrate side chains), cross-linked to pectic substances, may have sites for lignification, extraction requires destructive conditions, function: structural role, cell signalling (growth and guidance of pollen tube)

Lignin

Lignin: Polymer of phenolics, esp. phenylpropanoids, strengthening agent, resists fungal/pathogen attack

Lipids

Suberin, wax, cutin: variety of associated lipids for strength and waterproofing

Comparison of Detergent & Proximate System

Detergent sys	tem	Nitrogenous	Non-nitrogenous	Proximate system
† 		NPN compounds, proteins		CP
ND soluble (cell			lipids, ether soluble substances	CL
contents)			water soluble substances, pectins, starch	† ! ! !
† ! !	AD soluble	insoluble proteins	hemicellulose	NFE
i ND insoluble (cell wall)	AD insoluble	H ₂ SO ₄ soluble lignified proteins	alkali soluble lignin	
(NDF) (ADF)		ng.mea pretente	cellulose	
 		H ₂ SO ₄ insoluble	insoluble lignin (ADL)	CF

Department of Nutrition and Feed Technology

Other Methods to Determine Plant Contents

Starch/

Enzymatic: Degradation and quantification of glucose/sugar **Cell wall** monomers (degradability of different sources, solubilisation)

> **Refractometer:** Estimation of the concentration of a starch solution by its refraction index (solubility, co-extractions)

Protein

Colorimetric assays: (Bradford, Neuhoff) reaction of protein with dyes relative to standard (different staining, extractability)

Amino acid composition: Hydrolysis and quantification of AA by mass spectrometry (expensive, time consuming)

Lipids

Chromatography: Extraction and quantification by HPLC (extractability, oxidation, quantification)

Estimating the Feeding Value from Substrate Composition

Monogastric animals:

- Limited amount of enzymes involved in digestion (Pepsin, Trypsin, Amylase and Lipases)
- Enzymes are known and well characterised

Ruminants:

- Primary degradation of the substrate in the rumen by microbial fermentation
- Nutrient composition reaching the lower gastrointestinal tract is different from the feed nutrient composition
- Detoxification processes
- Estimation of the feeding value by substrate composition is limited due to lack of methods to predict transformations by the rumen fermentation
- Often cooperation of enzymes and enzyme complexes needed, many still unknown or poorly characterized

Energy: Maintenance and Production

Growth MJ/kg	Lactation MJ/kg	Reproduction MJ/kg			
Cattle 34 Calf 15 Pigs 26	Cattle 5.3 Calf Pigs 7.3	Cattle 25 Calf Pigs 15			
Maintenance MJ/ kg ^{0.75}					
	Cattle 0.4 Calf 0.5 Pigs 0.4	2			

- Fasting metabolism
- Maintenance requirements

Energy Content of the Main Nutrients

	Energy content (MJ/kg)	
Source	gross	physiological
Polysaccharides (starch)	17.6	17.6
Fat (triglycerides)	39.8	39.8
Protein	23.9	18.4

Determination of energy requirements

 $IME = ME_m^* W^{0.75} + ME_{pf}^* \Delta W + ME_c^* \Delta Wc + ME_I^* L (+ ME_o^* n_o)$

Factors influencing Energy Value of Feed

- Ration composition: "associative effect", apparent digestibility of mixture not neccessarily weighted sum of apparent digestibilities of ingredients, ANF, balance of nutrients
- Feed preparation: processing (crushing, chopping, cooking,...)
- Animal factors: digestive tract, ruminants/ non-ruminants
- **Feeding level:** increase causes faster passage rate through intestinal tract, shorter period of exposition to digestive enzymes

roughages variable

Next:

C. Biological methods (in vitro and in vivo techniques)

Thank you for your attention!

"Tawazun itu optimum"

Department of Nutrition and Feed Technology